

JBZ-003-1163003

Seat No.

M. Sc. (Sem. III) Examination

December - 2019

Mathematics - 3003

(Number Theory - I)

Faculty Code: 003

Subject Code: 1163003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) There are five questions.

- (2) All questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Do as directed: (Answer any seven)

14

- (a) Find the number of solution of $x^2 + 1 \equiv 0 \pmod{p}$ for p is of the form 4k + 3.
- (b) Define Totally Multiplicative Function with example.
- (c) Find all solutions of $6x \equiv 2 \pmod{8}$.
- (d) Prove that if p be a prime number and p does not divides a then $a^p \equiv a \pmod{p}$.
- (e) State Euclid's Algorithm.
- (f) Prove that g.c.d is always unique for any two real numbers.
- (g) State Division Algorithm.
- (h) State De-Poignac's Formulae.
- (i) Find $\phi(63*625*49)$.
- **2** Answer any **two** of the following:

14 7

3

- (a) State and prove Chinese Remainder Theorem.
 - (i) Prove that for g = g.c.d (a, b) if d is a positive integer of a and b such that d|a and d|b then

$$\frac{g}{d} = \left(\frac{a}{d}, \frac{b}{d}\right).$$

(ii) For $n \ge 1$ and p be a prime number then

4

$$\left[\frac{n}{p^j}\right] = \left[\frac{n-1}{p^j}\right] + 1 \text{ or } 0.$$

(b)

	(c)	Let a and b are non-zero integers then prove that g.c.d of a and b exists and if $g = \text{g.c.d}(a, b)$ then $g = ax + by$ for some integers x and y .	7
3	Answer the following:		14
	(a)	If $m_1, m_2, m_3, \dots, m_k \ge 1$ with the condition	7
		$m = m_1 + m_2 + m_3 + \dots + m_n$ then prove that	
		$\frac{m!}{m_1! m_2! m_3! \dots m_n!}$ is an integer.	
	(b)	State and prove Hansel's Lemma. OR	7
	(b)	Prove that if p is a prime number then p^2 has exactly	7
		$(p-1)\phi(p-1)$ primitive roots in (mod p^2).	
4	Ans	wer the following:	14
	(a)	State and Prove Euler's Theorem. OR	
	(a)	State and Prove Fundamental Theorem of Arithmetic.	
	(b)	Suppose $f(x)$ is a polynomial with integer coefficients,	
		p is a prime number and $f(x) \equiv 0 \pmod{p}$ has degree	
		n. Prove that $f(x) \equiv 0 \pmod{p}$ has at n solutions	
		in any completer residue system (mod p).	
5	Answer the following:		14
	(a)	Prove that $\sigma(n)$ and $\mathfrak{I}(n)$ is a multiplicative function.	4
	(b)	If $m_1, m_2 \ge 1$ and $m = m_1 \cdot m_2$ provided m_1 and m_2	5
		are relatively prime with $(\phi(m_1), \phi(m_2)) \ge 2$ then show	
	(c)	that m does not have a primitive root. Prove that if order of $a \pmod{m} = h$ and order of $b \pmod{m} = j$ with $(h, j) = 1$ then order of $ab \pmod{m} = hj$.	5
	(c)	Prove that for a prime number $p = 2$ or $4k+1$ there	5
		is a solution of $f(x) \equiv 0 \pmod{p}$ where $f(x) = x^2 + 1$ for	

some k.